Learning for Semantic Parsing Using Statistical Machine Translation Techniques
نویسندگان
چکیده
Semantic parsing is the construction of a complete, formal, symbolic meaning representation of a sentence. While it is crucial to natural language understanding, the problem of semantic parsing has received relatively little attention from the machine learning community. Recent work on natural language understanding has mainly focused on shallow semantic analysis, such as word-sense disambiguation and semantic role labeling. Semantic parsing, on the other hand, involves deep semantic analysis in which word senses, semantic roles and other components are combined to produce useful meaning representations for a particular application domain (e.g. database query). Prior research in machine learning for semantic parsing is mainly based on inductive logic programming or deterministic parsing, which lack some of the robustness that characterizes statistical learning. Existing statistical approaches to semantic parsing, however, are mostly concerned with relatively simple application domains in which a meaning representation is no more than a single semantic frame. In this proposal, we present a novel statistical approach to semantic parsing, WASP, which can handle meaning representations with a nested structure. The WASP algorithm learns a semantic parser given a set of sentences annotated with their correct meaning representations. The parsing model is based on the synchronous context-free grammar, where each rule maps a natural-language substring to its meaning representation. The main innovation of the algorithm is its use of state-of-the-art statistical machine translation techniques. A statistical word alignment model is used for lexical acquisition, and the parsing model itself can be seen as an instance of a syntax-based translation model. In initial evaluation on several real-world data sets, we show that WASP performs favorably in terms of both accuracy and coverage compared to existing learning methods requiring similar amount of supervision, and shows better robustness to variations in task complexity and word order. In future work, we intend to pursue several directions in developing accurate semantic parsers for a variety of application domains. This will involve exploiting prior knowledge about the natural-language syntax and the application domain. We also plan to construct a syntax-aware word-based alignment model for lexical acquisition. Finally, we will generalize the learning algorithm to handle contextdependent sentences and accept noisy training data.
منابع مشابه
برچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملLearning for Semantic Parsing with Statistical Machine Translation
We present a novel statistical approach to semantic parsing, WASP, for constructing a complete, formal meaning representation of a sentence. A semantic parser is learned given a set of sentences annotated with their correct meaning representations. The main innovation of WASP is its use of state-of-the-art statistical machine translation techniques. A word alignment model is used for lexical ac...
متن کاملLearning Synchronous Grammars for Semantic Parsing with Lambda Calculus
This paper presents the first empirical results to our knowledge on learning synchronous grammars that generate logical forms. Using statistical machine translation techniques, a semantic parser based on a synchronous context-free grammar augmented with λoperators is learned given a set of training sentences and their correct logical forms. The resulting parser is shown to be the bestperforming...
متن کاملSemantics-Driven Statistical Machine Translation
Semantic parsing, the task of mapping natural language sentences to logical forms, has recently played an important role in building natural language interfaces and question answering systems. In this talk, I will present three ways in which semantic parsing relates to machine translation: First, semantic parsing can be viewed *as* a translation task with many of the familiar issues, e.g., dive...
متن کاملImproving word alignment for low resource languages using English monolingual SRL
We introduce a new statistical machine translation approach specifically geared to learning translation from low resource languages, that exploits monolingual English semantic parsing to bias inversion transduction grammar (ITG) induction. We show that in contrast to conventional statistical machine translation (SMT) training methods, which rely heavily on phrase memorization, our approach focu...
متن کامل